Цифры объемные рисунок: Объемные цифры рисунок – 72 фото

Придание рисунку объемного вида

Используемое приложение Office:



  • Word


  • PowerPoint


  • Excel

Word



Задача


Вид документа можно быстро улучшить, применив к рисунку объемный эффект.



Действия


  1. Щелкните рисунок, к которому требуется применить данный эффект, и откройте вкладку Формат рисунка.

  2. В разделе Стили рисунков щелкните Эффекты, наведите указатель на элемент Поворот объемной фигуры, а затем выберите нужный эффект, например Изометрический, влево вниз.

Подсказки


  • Чтобы создать настраиваемый эффект, щелкните Эффекты, наведите указатель на элемент Поворот объемной фигуры, щелкните Параметры поворота объемной фигуры, а затем выберите нужный параметр.

  • Чтобы удалить объемный эффект, щелкните Эффекты, наведите указатель на элемент Поворот объемной фигуры, а затем выберите Без объемного поворота.

PowerPoint



Задача


Вид документа можно быстро улучшить, применив к рисунку объемный эффект.



Действия


  1. Щелкните рисунок, к которому требуется применить данный эффект, и откройте вкладку Формат рисунка.

    Примечание: Чтобы выделить несколько рисунков, щелкните их, удерживая клавишу SHIFT.

  2. В разделе Стили рисунков щелкните Эффекты, наведите указатель на элемент Поворот объемной фигуры, а затем выберите нужный эффект, например Изометрический, влево вниз.

Подсказки


  • Чтобы создать настраиваемый эффект, щелкните Эффекты, наведите указатель на элемент Поворот объемной фигуры, щелкните Параметры поворота объемной фигуры, а затем выберите нужный параметр.

  • Чтобы удалить объемный эффект, щелкните Эффекты, наведите указатель на элемент Поворот объемной фигуры, а затем выберите Без объемного поворота.

См. также



Добавление эффектов в текст



Excel



Задача


Вид документа можно быстро улучшить, применив к рисунку объемный эффект.



Действия


  1. Щелкните рисунок, к которому требуется применить данный эффект, и откройте вкладку Формат рисунка.

    Примечание: Чтобы выделить несколько рисунков, щелкните их, удерживая клавишу SHIFT.

  2. В разделе Стили рисунков щелкните Эффекты, наведите указатель на элемент Поворот объемной фигуры, а затем выберите нужный эффект, например Изометрический, влево вниз.

Подсказки


  • Чтобы удалить объемный эффект, щелкните Эффекты, наведите указатель на элемент Поворот объемной фигуры, а затем выберите Без объемного поворота.

См. также



Добавление эффектов в текст



Поворот и отражение надписи, фигуры, объекта WordArt или рисунка

Положение надписи (и текста в ней), фигуры, объекта WordArt или рисунка можно изменять, поворачивая или переворачивая их. 

Если вы работаете в электронной почте, см. статью Поворот рисунка в Outlook.


Щелкните заголовок раздела ниже, чтобы открыть подробные инструкции.


  1. Выберите объект, который вы хотите повернуть.

  2. Щелкните маркер поворота сверху объекта и перетащите его в нужном направлении.

    • Чтобы выполнять поворот с шагом в 15 градусов, перетаскивайте маркер поворота, удерживая нажатой клавишу SHIFT.

    • При повороте нескольких фигур каждая из них поворачивается по отдельности относительно своего центра.


  1. Щелкните объект, который нужно повернуть.

  2. В разделе Средства рисования (или Работа с рисунками, если вы поворачиваете рисунок) откройте вкладку Формат, в группе Упорядочение нажмите кнопку Повернуть, а затем выберите пункт Другие параметры поворота.

  3. В открывшейся области или диалоговом окне введите требуемую величину угла поворота объекта в поле Поворот. Вы также можете использовать стрелки, чтобы повернуть объект точно так, как хотите.

Если в разделе Средства рисования или Работа с рисунками не отображается вкладка “Формат”, выделите надпись, фигуру или объект WordArt. Для открытия вкладки Формат может потребоваться дважды щелкнуть объект.


  1. Выберите объект, который вы хотите повернуть.

  2. В разделе Средства рисования (или Работа с рисунками, если вы поворачиваете рисунок) откройте вкладку Формат, в группе Упорядочить нажмите кнопку Повернуть, а затем сделайте следующее:

    • Чтобы повернуть объект на 90° вправо, выберите пункт Повернуть вправо на 90°.

    • Чтобы повернуть объект на 90° влево, выберите пункт Повернуть влево на 90°.

Если в разделе Средства рисования или Работа с рисунками не отображается вкладка “Формат”, выделите надпись, фигуру, объект WordArt или рисунок. Для открытия вкладки Формат может потребоваться дважды щелкнуть объект.


Вы можете зеркально отразить объект или перевернуть его вверх ногами с помощью переворачивания.

  1. Выберите объект, который вы хотите повернуть.

  2. В разделе Средства рисования (или Работа с рисунками, если вы поворачиваете рисунок) откройте вкладку Формат, в группе Упорядочить нажмите кнопку Повернуть, а затем сделайте следующее:

    • Чтобы перевернуть объект вверх ногами, щелкните Отразить сверху вниз.

    • Чтобы зеркально отразить объект, щелкните Отразить слева направо.

Если в разделе Средства рисования или Работа с рисунками не отображается вкладка “Формат”, выделите надпись, фигуру, объект WordArt или рисунок. Для открытия вкладки Формат может потребоваться дважды щелкнуть объект.


Совет: Если вы просто хотите зеркально отразить текст в документе, см. статью Создание зеркального отражения текста.

При повороте объекта текст внутри него также поворачивается. Однако текст внутри перевернутого объекта не переворачивается вместе с ним. Чтобы отразить текст вместе с объектом, содержащим его, вы можете сделать следующее в Outlook, Excel и PowerPoint:

    Выберите и щелкните правой кнопкой мыши объект, который вы хотите отразить, и выберите команду Формат фигуры.

  1. В области Формат фигуры в разделе Параметры фигуры откройте вкладку Эффекты.

  2. В разделе Поворот объемной фигуры введите 180 в одном из полей Вращение вокруг оси (X, Y или Z в зависимости от того, как вы хотите повернуть текст).

    Примечания: 

    • Вращение может повлиять на цвет заливки. Вы можете настроить цвет заливки в области Формат фигуры на вкладке Заливка и границы .

    • Если щелкнуть объект, чтобы изменить текст, он временно вернется к прежнему виду. Он будет снова отражен, когда вы завершите изменение текста и щелкнете за пределами объекта.

Важно: 
Office 2010 больше не поддерживается. Перейдите на Microsoft 365, чтобы работать удаленно с любого устройства и продолжать получать поддержку.

Обновить


Щелкните заголовок раздела ниже, чтобы открыть подробные инструкции.


  1. Щелкните маркер поворота сверху объекта и перетащите его в нужном направлении.

    Примечание: Чтобы выполнять поворот с шагом в 15 градусов, перетаскивайте маркер поворота, удерживая нажатой клавишу SHIFT.


  1. Щелкните объект, который нужно повернуть.

  2. В открывшейся области или диалоговом окне введите требуемую величину угла поворота объекта в поле Поворот. Вы также можете использовать стрелки, чтобы повернуть объект точно так, как хотите.


Вы можете зеркально отразить объект или перевернуть его вверх ногами с помощью переворачивания.

  1. Выберите объект, который вы хотите повернуть.

  2. В разделе Средства рисования (или Работа с рисунками, если вы поворачиваете рисунок) откройте вкладку Формат, в группе Упорядочить нажмите кнопку Повернуть, а затем сделайте следующее:

    • Чтобы перевернуть объект вверх ногами, щелкните Отразить сверху вниз.

    • В левой области диалогового окна Формат фигуры щелкните Поворот объемной фигуры.

    • Введите 180 в одном из полей Вращение вокруг оси (X, Y или Z в зависимости от того, как вы хотите повернуть текст).

      Примечания: 

      • Вращение может повлиять на цвет заливки. Вы можете настроить цвет заливки в диалоговом окне Формат фигуры на вкладке Заливка.

      • Если щелкнуть объект, чтобы изменить текст, он временно вернется к прежнему виду. Он будет снова отражен, когда вы щелкнете за его пределами.


  1. Выберите объект, который вы хотите повернуть.

  2. Щелкните маркер поворота сверху объекта и перетащите его в нужном направлении.

    • При повороте нескольких фигур каждая из них поворачивается по отдельности относительно своего центра.

    • Кроме того, вы можете выделить объект, нажать и удерживать клавишу OPTION, а затем нажимать клавиши со стрелками влево или вправо, чтобы выполнить поворот.


  1. На вкладке Формат фигурыФормат рисунка в группе Упорядочить нажмите кнопку Повернуть.

    • Если вы не видите вкладку Формат фигуры или Формат рисунка, убедитесь, что выбрана надпись, фигура, объект WordArt или рисунок.

    • Кнопка Повернуть может быть скрыта, если у вас маленький экран. Если вы не видите кнопку Повернуть, щелкните Упорядочить, чтобы просмотреть скрытые кнопки в группе Упорядочить.

  2. Нажмите кнопку Другие параметры поворота.

  3. В открывшемся диалоговом окне или области введите требуемую величину угла поворота объекта в поле Поворот. Вы также можете использовать стрелки, чтобы повернуть объект точно так, как хотите.


    Щелкните объект, который нужно повернуть.

  1. На вкладке Формат фигурыФормат рисунка в группе Упорядочить нажмите кнопку Повернуть.

    • Если вы не видите вкладку Формат фигуры или Формат рисунка, убедитесь, что выбрана надпись, фигура, объект WordArt или рисунок.

    • Кнопка Повернуть может быть скрыта, если у вас маленький экран. Если вы не видите кнопку Повернуть, щелкните Упорядочить, чтобы просмотреть скрытые кнопки в группе Упорядочить.

  2. Чтобы повернуть объект на 90 градусов вправо, щелкните Повернуть вправо на 90°. Для поворота влево щелкните Повернуть влево на 90°.


Вы можете зеркально отразить объект или перевернуть его вверх ногами с помощью переворачивания.

  1. Выберите объект, который вы хотите повернуть.

  2. На вкладке Формат фигурыФормат рисунка в группе Упорядочить нажмите кнопку Повернуть.

    • Если вы не видите вкладку Формат фигуры или Формат рисунка, убедитесь, что выбрана надпись, фигура, объект WordArt или рисунок.

    • Кнопка Повернуть может быть скрыта, если у вас маленький экран. Если вы не видите кнопку Повернуть, щелкните Упорядочить, чтобы просмотреть скрытые кнопки в группе Упорядочить.

  3. Выполните одно из указанных ниже действий.

    • Чтобы перевернуть объект вверх ногами, щелкните Отразить сверху вниз.

    • Чтобы зеркально отразить объект, щелкните Отразить слева направо.


    Щелкните объект, который нужно переместить.

  1. Перетащите объект в нужное место.

    • Чтобы переместить несколько объектов, удерживайте нажатой клавишу SHIFT при выделении объектов.

    • Чтобы переместить объект вверх, вниз или вбок с небольшим шагом, щелкните объект и нажмите клавишу со стрелкой, удерживая нажатой клавишу COMMAND. Обратите внимание, что в Word это действие можно использовать только для перемещения вверх или вниз.

    • Чтобы объект перемещался только по горизонтали или по вертикали, при его перетаскивании удерживайте нажатой клавишу SHIFT.


При группировании объекты объединяются, и их можно форматировать, перемещать и копировать как группу.

  1. Удерживая нажатой клавишу SHIFT, щелкните объекты, которые нужно сгруппировать, а затем (в зависимости от типа выбранных объектов) откройте вкладку Формат фигуры или Формат рисунка.

  2. Щелкните маркер поворота сверху объекта и перетащите его в нужном направлении.


Отражение текста


См. статью Зеркальное отражение текста.


Поворот таблицы или графического элемента SmartArt


Скопируйте таблицу или графический элемент SmartArt, вставьте как рисунок, а затем поверните рисунок.


Дополнительные сведения



Обтекание текста вокруг круга или другой фигуры


Обрезка рисунка


Группировка и отмена группировки фигур, рисунков и других объектов


Трехмерные фигуры (трехмерные фигуры)

Что такое трехмерные фигуры?

В геометрии трехмерная фигура может быть определена как твердая фигура, объект или форма, имеющая три измерения: длину, ширину и высоту. В отличие от двухмерных фигур, трехмерные фигуры имеют высоту, которая совпадает с толщиной или глубиной. Трехмерность также записывается как 3D, и, следовательно, эти фигуры также обычно называют 3D-формами. Все трехмерные фигуры занимают пространство, которое измеряется объемом.

Примеры трехмерных фигур

Куб, прямоугольная призма, сфера, конус и цилиндр — основные трехмерные фигуры, которые мы видим вокруг себя.

Реальные примеры трехмерных фигур

Трехмерные фигуры можно увидеть повсюду вокруг нас. Мы можем видеть кубик в кубике Рубика и кубике, прямоугольную призму в книге и коробке, сферу в глобусе и шаре, конус в морковке и рожке мороженого, цилиндр в ведерке и бочка вокруг нас.

Атрибуты трехмерных фигур

У трехмерной фигуры есть три атрибута: грань, ребро и вершина. Давайте подробно разберемся с трехмерными формами и их свойствами.

Лицо: Каждая отдельная поверхность, плоская или изогнутая, трехмерной фигуры называется ее гранью.

Край: Линия, где встречаются две грани трехмерных фигур, называется его краем.

Вершина: каждый угол, где встречаются три грани трехмерных фигур, называется его вершиной. Вершины – это множественное число от вершины.

Список трехмерных фигур

Вот список названий трехмерных фигур с их изображениями и атрибутами.

Формула трехмерных фигур

Сеть трехмерных форм

Сеть — это узор, созданный при плоской поверхности трехмерной фигуры, показывающей каждую грань фигуры.

3D-фигуры могут иметь более одного шаблона цепей. Названия нескольких трехмерных фигур и их сетей показаны ниже:

Забавные факты :
Все трехмерные формы состоят из двухмерных форм.

Разница между 2D-формами и 3D-фигурами

Давайте различать 2D- и 3D-формы, разбираясь в двухмерных и трехмерных формах и их свойствах.

Решенные примеры

Пример 1: Что из следующего является трехмерной формой?

Конус Квадрат Сфера Кубовидный Цилиндр Параллелограмм

Решение:

Конус Сфера Кубовидно Цилиндр

Пример 2: Укажите, являются ли следующие верными или ложными .

  1. Трехмерная форма имеет 3 измерения.
  2. Трехмерные формы также называют плоскими формами.
  3. Трехмерные фигуры занимают пространство.
  4. Все трехмерные фигуры имеют плоские грани.

Решение:

  1. Верно
  2. Ложно. Трехмерные формы также называют объемными формами.
  3. Верно
  4. Ложно. Сфера представляет собой трехмерную форму без плоской грани.

Пример 3: Заполните таблицу атрибутами перечисленных трехмерных фигур.

Решение:

Пример 4: Сопоставьте объект с его формой.

Решение:

  1. – (iii)
  2. – (i)
  3. – (iv)
  4. – (ii)

4 единицы, длина 3 единицы и высота 5 единиц.

Решение:

Дан кубоид, имеющий три единицы длины, четыре единицы ширины и пять единиц высоты.

Площадь поверхности прямоугольного параллелепипеда $= 2 \times (\text{lw} + \text{wh} + \text{lh})$ квадратных единиц

$= 2 × (\text{lw} + \text{ wh} + \text{lh})$

$= 2[(3 \times 4) + (4 \times 5) + (3 \times 5)]$

$= 2(12 + 20 + 15) $

$= 2(47)$

$= 94$ квадратных единиц

Следовательно, площадь поверхности данного прямоугольного параллелепипеда равна 94 кв. ед.

Пример 6: Джейн любит пить молоко из цилиндрического стакана. Ее стакан имеет 15 единиц высоты и 3 единицы радиуса основания. Сколько молока она может налить в стакан?

Решение:

Учитывая, что высота стакана 15 единиц, а радиус основания 3 единицы.

Используя формулу объема цилиндра, мы можем найти объем стакана.

Объем стакана, $\text{V} = πr 2 \text{h}$

$= π(3) 2 ​​​​(15)$

$= 135π$

$= 424,11 в 3 $

Следовательно, Джейн может налить в ее стакан примерно 424 кубических единицы молока.

Практические задачи

1

Какая фигура имеет две плоские грани и одну кривую?

Цилиндр

Сфера

Конус

Куб

Правильный ответ: Цилиндр
Цилиндр имеет две плоские поверхности, имеющие форму круга, и одну изогнутую поверхность.

2

Сколько квадратных фигур имеет сетка куба?

4

6

8

10

Правильный ответ: 6
Куб имеет 6 граней, которые являются квадратами. Итак, в сетке куба будет 6 квадратных фигур.

3

Что из следующего не имеет ребра?

Конус

Цилиндр

Куб

Сфера

Правильный ответ: Сфера
Сфера имеет одну сторону. Так что у него нет края.

4

Какая из данных фигур НЕ является трехмерной?

Трапеция

Призма

Пирамида

Куб

Правильный ответ: Трапеция
Трапеция представляет собой двумерную фигуру с четырьмя сторонами, одна пара противоположных сторон параллельна друг другу, а две другие стороны не равны параллельно.

5

Как называется пересечение двух граней объемной фигуры?

Вершина

Сторона

Грань

Край

Правильный ответ: Край
Ребра — это отрезки, соединяющие две грани. Грани куба пересекаются по линиям, называемым ребрами. Фигуры с несколькими ребрами называются сплошными фигурами. Пересечение нескольких плоскостей называется вершиной.

6

Объемные геометрические фигуры называются ________.

фигуры

тела

грани

многоугольники

Правильный ответ: тела
Трехмерные геометрические фигуры называются телами.

7

Что такое в математике сплошная заостренная фигура, соединенная с вершиной изогнутой поверхностью с плоским круглым основанием?

Конус

Сфера

Цилиндр

Пирамида

Правильный ответ: Конус
Конусы представляют собой трехмерные тела, состоящие из круглого основания, соединенного с одной точкой (называемой вершиной) изогнутыми сторонами. В качестве альтернативы вы можете думать о конусе как о круглой пирамиде.

Часто задаваемые вопросы

Какие существуют типы трехмерных фигур?

Куб, прямоугольный параллелепипед, цилиндр, сфера, конус, призма и пирамиды.

Каковы атрибуты трехмерных фигур?

Трехмерные фигуры имеют 3 измерения — длину, ширину и глубину. В результате этих размеров эти формы имеют атрибуты граней, ребер и вершин.

Что такое ребро?

Ребро — это линия, на которой встречаются две грани трехмерной формы.

Например, у куба 12 ребер.

Что такое вершины?

Вершины — это углы, в которых сходятся три грани. Например, прямоугольный параллелепипед имеет 8 вершин.

Какая польза от объема трехмерной формы?

Объем помогает найти пространство, занимаемое данной фигурой.

Кубическая сеть состоит из скольких квадратов?

Кубическая сеть состоит из шести квадратов.

Трехмерные фигуры | SkillsYouNeed

На этой странице рассматриваются свойства трехмерных или «твердых» форм.

Двумерная фигура имеет длину и ширину. Трехмерная твердая форма также имеет глубину. Трехмерные формы по своей природе имеют внутреннее и внешнее, разделенные поверхностью. Все физические предметы, к которым можно прикоснуться, трехмерны.

На этой странице рассматриваются как прямолинейные тела, называемые многогранниками, которые основаны на многоугольниках, так и тела с кривыми, такие как шары, цилиндры и конусы.


Многогранники

Многогранники (или многогранники) представляют собой твердые тела с прямыми сторонами. Многогранники основаны на многоугольниках, двумерных плоских формах с прямыми линиями.

См. нашу страницу Свойства полигонов, чтобы узнать больше о работе с полигонами.

Многогранники определяются как имеющие:

  • Прямые ребра .
  • Плоские стороны называются гранями .
  • Углов, называемых вершинами .

Многогранники также часто определяются количеством ребер, граней и вершин, которые они имеют, а также тем, имеют ли их грани одинаковую форму и размер. Как и многоугольники, многогранники могут быть правильными (на основе правильных многоугольников) или неправильными (на основе неправильных многоугольников). Многогранники также могут быть вогнутыми или выпуклыми.

Одним из самых простых и привычных многогранников является куб. Куб — это правильный многогранник, имеющий шесть квадратных граней, 12 ребер и восемь вершин.



Правильные многогранники (Платоновые тела)

Пять правильных многогранников представляют собой особый класс многогранников, все грани которых идентичны, причем каждая грань является правильным многоугольником. Платоновые тела:

  • Тетраэдр с четырьмя равносторонними треугольными гранями.
  • Куб с шестью квадратными гранями.
  • Октаэдр с восемью равносторонними треугольными гранями.
  • Додекаэдр с двенадцатью пятиугольными гранями.
  • Икосаэдр с двадцатью равносторонними треугольными гранями.

См. рисунок выше для иллюстрации каждого из этих правильных многогранников.

Что такое призма?

Призма — это любой многогранник, имеющий два совпадающих конца и плоские стороны . Если вы разрежете призму в любом месте по ее длине, параллельно ее концу, ее поперечное сечение будет таким же — вы получите две призмы. Стороны призмы параллелограммов – четырехугольников с двумя парами сторон одинаковой длины.

Антипризмы аналогичны обычным призмам тем, что их концы совпадают. Однако стороны антипризмы состоят из треугольников, а не из параллелограммов. Антипризмы могут стать очень сложными.

Что такое пирамида?

Пирамида — это многогранник с многоугольниками в основании , который соединяется с вершиной (верхняя точка) с прямыми сторонами.

Хотя мы склонны думать о пирамидах с квадратным основанием, вроде тех, что строили древние египтяне, на самом деле они могут иметь основание любого многоугольника, правильного или неправильного. Кроме того, пирамида может иметь вершину прямо в центре основания, т.0037 Правая пирамида или может иметь вершину не по центру, если это  Наклонная пирамида .

Более сложные многогранники

Существует еще много типов многогранников: симметричные и асимметричные, вогнутые и выпуклые.

Архимедовы тела, например , состоят как минимум из двух разных правильных многоугольников.

Усеченный куб (как показано на рисунке) представляет собой архимедово тело с 14 гранями. Шесть граней представляют собой правильные восьмиугольники, а остальные восемь — правильные (равносторонние) треугольники. Фигура имеет 36 ребер и 24 вершины (угла).


Трехмерные фигуры с кривыми

Твердые фигуры с изогнутыми или круглыми краями не являются многогранниками. Многогранники могут иметь только прямые стороны. Также см. нашу страницу о двумерных изогнутых формах.

Многие объекты вокруг вас будут включать по крайней мере несколько кривых. В геометрии наиболее распространенными искривленными телами являются цилиндры, конусы, сферы и торы (множественное число для тора).

Обычные трехмерные формы с кривыми:
Цилиндр Конус
Цилиндр имеет одинаковое поперечное сечение от одного конца до другого. Цилиндры имеют два одинаковых конца либо круга, либо овала. Несмотря на то, что они похожи, цилиндры не являются призмами, поскольку призма имеет (по определению) параллелограмм с плоскими сторонами. Конус имеет круглое или овальное основание и вершину (или вершину). Сторона конуса плавно сужается к вершине. Конус похож на пирамиду, но отличается тем, что конус имеет одну изогнутую сторону и круглое основание.
Сфера Тор
Сфера, имеющая форму шара или шара, представляет собой полностью круглый объект. Каждая точка на поверхности сферы находится на равном расстоянии от центра сферы. Правильный кольцевой тор, имеющий форму кольца, шины или бублика, образован вращением меньшего круга вокруг большего круга. Существуют и более сложные формы торов.

Площадь поверхности

На нашей странице, посвященной расчету площади, объясняется, как вычислить площадь двухмерных фигур, и вам необходимо понимать эти основы, чтобы вычислять площадь поверхности трехмерных фигур.

Для трехмерных фигур мы говорим о площади поверхности , чтобы избежать путаницы.

Вы можете использовать свои знания о площади двухмерных фигур для вычисления площади поверхности трехмерной фигуры, поскольку каждая грань или сторона фактически представляет собой двумерную форму.

Таким образом, вы вычисляете площадь каждого лица, а затем складываете их вместе.

Как и в случае с плоскими формами, площадь поверхности твердого тела выражается в квадратных единицах: см 2 , дюймы 2 , м 2 и так далее. Вы можете найти более подробную информацию о единицах измерения на нашей странице Системы измерения .

Примеры расчета площади поверхности

Куб

Площадь поверхности куба равна площади одной грани (длина x ширина), умноженной на 6, поскольку все шесть граней одинаковы.

Поскольку грань куба представляет собой квадрат, вам нужно провести только одно измерение – длина и ширина квадрата по определению одинаковы.

Следовательно, одна грань этого куба равна 10 × 10 см = 100 см 2 . Умножаем на 6 количество граней куба, и получаем, что площадь поверхности этого куба равна 600см 2 .

Другие правильные многогранники

Точно так же можно вычислить площадь поверхности других правильных многогранников (платоновых тел), найдя площадь одной стороны и умножив результат на общее количество сторон — см. диаграмму основных многогранников выше. .

Если площадь одного пятиугольника, составляющего додекаэдр, равна 22см 2 , то умножьте это на общее количество сторон (12), чтобы получить ответ 264см 2 .


Пирамида

Чтобы вычислить площадь поверхности стандартной пирамиды с четырьмя равными треугольными сторонами и квадратным основанием:

Сначала вычислите площадь основания (квадрата) длина × ширина.

Далее определите площадь одной стороны (треугольника). Измерьте ширину вдоль основания, а затем высоту треугольника (также известную как наклонная длина) от центральной точки основания до вершины.

Есть два способа вычислить площадь поверхности четырех треугольников:

  • Разделите ответ на 2, чтобы получить площадь поверхности одного треугольника, а затем умножьте на 4, чтобы получить площадь поверхности всех четырех сторон, или

  • Умножьте ответ на 2.

Наконец, сложите площадь основания и сторон вместе, чтобы найти общую площадь поверхности пирамиды.

Для расчета площади поверхности других типов пирамид, сложите площадь основания (известную как площадь основания) и площадь сторон (площадь боковых сторон). Возможно, вам придется измерить стороны по отдельности.

Диаграммы сетей

Геометрическая сеть представляет собой двумерный «шаблон» для трехмерного объекта. Сети могут быть полезны при расчете площади поверхности трехмерного объекта. На диаграмме ниже вы можете увидеть, как строятся базовые пирамиды, если пирамида «развернута», у вас остается сеть.

Подробнее о сетевых схемах см. на стр. 3D-формы и сети .


Призма

Для расчета площади поверхности призмы :

Призмы имеют два одинаковых конца и плоские стороны параллелограмма.

Вычислите площадь одного конца и умножьте на 2.

Для правильной призмы (у которой все стороны одинаковы) вычислите площадь одной из сторон и умножьте на общее количество сторон.

Для призм неправильной формы (с разными сторонами) рассчитайте площадь каждой стороны.

Сложите два ответа вместе (концы + стороны), чтобы найти общую площадь поверхности призмы.


Цилиндр

Пример:
Радиус = 5 см
Высота = 10 см

Чтобы вычислить площадь поверхности цилиндра , полезно подумать о составных частях формы. Представьте себе банку сладкой кукурузы — у нее есть верх и низ, оба из которых представляют собой круги. Если вы отрежете сторону по длине и сгладите ее, у вас получится прямоугольник. Следовательно, вам нужно найти площадь двух кругов и прямоугольника.

Сначала определите площадь одного из кругов.

Площадь круга равна π (пи) × радиус 2 .

При радиусе 5 см площадь одного из кругов равна 3,14 × 5 2 = 78,5 см 2 .

Умножьте ответ на 2, так как кругов два 157см 2

Площадь стороны цилиндра равна периметру круга × высоте цилиндра.

Периметр равен π x 2 × радиус. В нашем примере 3,14 × 2 × 5 = 31,4·9.0005

Измерьте высоту цилиндра. В данном примере высота составляет 10 см. Площадь стороны 31,4 × 10 = 314см 2 .

Общая площадь поверхности может быть найдена путем суммирования площадей кругов и стороны:

157 + 314 = 471 см 2


Пример:
Радиус = 5 см
Длина наклона

Конус

При расчете площади поверхности конуса необходимо использовать длину «наклона», а также радиус основания.

Однако вычислить его относительно просто:

Площадь круга в основании конуса составляет π (пи) × радиус 2 .

В этом примере расчет равен 3,14 × 5 2 = 3,14 × 25 = 78,5 см 2

Площадь стороны, наклонной части, можно найти по следующей формуле:

π (пи) × радиус × длина наклона.

В нашем примере расчет равен 3,14 × 5 × 10 = 157 см 2 .

Наконец, добавьте площадь основания к площади боковой поверхности, чтобы получить общую площадь поверхности конуса.

78,5 + 157 = 235,5 см 2


Теннисный мяч:
Диаметр = 2,6 дюйма

Сфера

4 × π × радиус 2 .

Для сферы часто проще измерить диаметр – расстояние поперек сферы. Затем вы можете найти радиус, который составляет половину диаметра.

Диаметр стандартного теннисного мяча составляет 2,6 дюйма. Таким образом, радиус составляет 1,3 дюйма. Для формулы нам нужен радиус в квадрате. 1,3 × 1,3 = 1,69

Таким образом, площадь поверхности теннисного мяча равна:

4 × 3,14 × 1,69 = 21,2264 дюйма 2 .


Пример:
R (Большой радиус) = 20 см
r (Малый радиус) = 4 см

Тор

Чтобы вычислить площадь поверхности тора , вам нужно найти два значения радиуса.

Большой радиус (R) измеряется от середины отверстия до середины кольца.

Малый или малый радиус (r) измеряется от середины кольца до внешнего края.

На диаграмме показаны два вида примера тора и способы измерения его радиусов (или радиусов).

Расчет площади поверхности состоит из двух частей (по одной для каждого радиуса).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *